
E04 – Minimizing or Maximizing a Function

E04NFF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

Note. This routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and
Section 12 for a detailed description of the algorithm, the specification of the optional parameters and a
description of the monitoring information produced by the routine.

1 Purpose

E04NFF solves general quadratic programming problems. It is not intended for large sparse problems.

2 Specification

SUBROUTINE E04NFF(N, NCLIN, A, LDA, BL, BU, CVEC, H, LDH, QPHESS,
1 ISTATE, X, ITER, OBJ, AX, CLAMDA, IWORK, LIWORK,
2 WORK, LWORK, IFAIL)
INTEGER N, NCLIN, LDA, LDH, ISTATE(N+NCLIN), ITER,
1 IWORK(LIWORK), LIWORK, LWORK, IFAIL
real A(LDA,∗), BL(N+NCLIN), BU(N+NCLIN), CVEC(∗),
1 H(LDH,∗), X(N), OBJ, AX(∗), CLAMDA(N+NCLIN),
2 WORK(LWORK)

3 Description

E04NFF is designed to solve a class of quadratic programming problems that are assumed to be stated
in the following general form:

minimize
x∈Rn

f(x) subject to l ≤
{
x
Ax

}
≤ u,

where A is an mL by n matrix and f(x) may be specified in a variety of ways depending upon the
particular problem to be solved. The available forms for f(x) are listed in Table 1 below, in which the
prefixes FP, LP and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’
respectively and c is an n element vector.

Problem type F (x) Matrix H
FP Not applicable Not applicable
LP cTx Not applicable
QP1 1

2x
THx symmetric

QP2 cTx+ 1
2x

THx symmetric
QP3 1

2x
THTHx m by n upper trapezoidal

QP4 cTx+ 1
2x

THTHx m by n upper trapeziodal

Table 1

There is no restriction on H or HTH apart from symmetry. If the quadratic function is convex, a global
minimum is found; otherwise, a local minimum is found. The default problem type is QP2 and other
objective functions are selected by using the optional parameter Problem Type (see Section 11.2). For
problems of type FP, the objective function is omitted and the routine attempts to find a feasible point
for the set of constraints.

The constraints involving A are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified
by setting li = ui. If certain bounds are not present, the associated elements of l or u can be set to
special values that will be treated as −∞ or +∞. (See the description of the optional parameter Infinite
Bound Size in Section 11.2).

[NP3390/19/pdf] E04NFF.1

E04NFF E04 – Minimizing or Maximizing a Function

The defining feature of a quadratic function f(x) is that the second-derivative matrix ∇2f(x) (the Hessian
matrix) is constant. For QP1 and QP2 (the default), ∇2f(x) = H ; for QP3 and QP4, ∇2f(x) = HTH ;
and for the LP case, ∇2f(x) = 0. If H is positive semi-definite, it is usually more efficient to use E04NCF.
If H is defined as the zero matrix, E04NFF will still attempt to solve the resulting linear programming
problem; however, this can be accomplished more efficiently by setting the optional parameter Problem
Type = LP (see Section 11.2), or by using E04MFF instead.

The user must supply an initial estimate of the solution.

In the QP case, the user may supply H either explicitly as an m by n matrix, or implicitly in a subroutine
that computes the product Hx or HTHx for any given vector x.

In general, a successful run of E04NFF will indicate one of three situations: (i) a minimizer has been
found; (ii) the algorithm has terminated at a so-called dead-point; or (iii) the problem has no bounded
solution. If a minimizer is found, and ∇2f(x) is positive-definite or positive semi-definite, E04NFF will
obtain a global minimizer; otherwise, the solution will be a local minimizer (which may or may not be a
global minimizer). A dead-point is a point at which the necessary conditions for optimality are satisfied
but the sufficient conditions are not. At such a point, a feasible direction of decrease may or may not
exist, so that the point is not necessarily a local solution of the problem. Verification of optimality in such
instances requires further information, and is in general an NP-hard problem (see Pardalos and Schnitger
[6]). Termination at a dead-point can occur only if ∇2f(x) is not positive-definite. If ∇2f(x) is positive
semi-definite, the dead-point will be a weak minimizer (i.e., with a unique optimal objective value, but
an infinite set of optimal x).

The method used by E04NFF (see Section 10) is most efficient when many constraints or bounds are
active at the solution.

4 References

[1] Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) User’s guide for LSSOL
(Version 1.0) Report SOL 86–1 Department of Operations Research, Stanford University

[2] Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

[3] Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems
with a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

[4] Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

[5] Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

[6] Pardalos P M and Schnitger G (1988) Checking local optimality in constrained quadratic
programming is NP-hard Operations Research Letters 7 33–35

[7] Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N — INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN — INTEGER Input

On entry: mL, the number of general linear constraints.

Constraint: NCLIN ≥ 0.

E04NFF.2 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

3: A(LDA,∗) — real array Input

Note: the second dimension of the array A must be at least N when NCLIN > 0, and at least 1
when NCLIN = 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i = 1, 2, . . . ,mL.

If NCLIN = 0 then the array A is not referenced.

4: LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E04NFF
is called.

Constraint: LDA ≥ max(1,NCLIN).

5: BL(N+NCLIN) — real array Input
6: BU(N+NCLIN) — real array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and the
next mL elements the bounds for the general linear constraints (if any). To specify a non-existent
lower bound (i.e. lj = −∞), set BL(j) ≤ −bigbnd, and to specify a non-existent upper bound (i.e.,
uj = +∞), set BU(j) ≥ bigbnd; the default value of bigbnd is 1020, but this may be changed by
the optional parameter Infinite Bound Size (see Section 11.2). To specify the jth constraint as an
equality, set BL(j) = BU(j) = β, say, where |β| < bigbnd.

Constraints:

BL(j) ≤ BU(j), for j = 1, 2, . . . ,N+NCLIN,
|β| < bigbnd when BL(j) = BU(j) = β.

7: CVEC(∗) — real array Input

Note: the dimension of the array CVEC must be at least N when the problem is of type LP, QP2
(the default) or QP4, and at least 1 otherwise.

On entry: the coefficients of the explicit linear term of the objective function when the problem is
of type LP, QP2 (the default) and QP4.

If the problem is of type FP, QP1, or QP3, CVEC is not referenced.

8: H(LDH,∗) — real array Input

Note: the second dimension of the array H must be at least N if it is to be used to store H explicitly,
and at least 1 otherwise.

On entry: H may be used to store the quadratic term H of the QP objective function if desired.
In some cases, the user need not use H to store H explicitly (see the specification of subroutine
QPHESS below). The elements of H are referenced only by subroutine QPHESS. The number of
rows of H is denoted by m, whose default value is n. (The optional parameter Hessian Rows may
be used to specify a value of m < n; see Section 11.2).

If the default version of QPHESS is used and the problem is of type QP1 or QP2 (the default), the
first m rows and columns of H must contain the leading m by m rows and columns of the symmetric
Hessian matrix H . Only the diagonal and upper triangular elements of the leading m rows and
columns of H are referenced. The remaining elements need not be assigned.

If the default version of QPHESS is used and the problem is of type QP3 or QP4, the first m rows
of H must contain an m by n upper trapezoidal factor of the symmetric Hessian matrix HTH .
The factor need not be of full rank, i.e., some of the diagonal elements may be zero. However,
as a general rule, the larger the dimension of the leading non-singular sub-matrix of H, the fewer
iterations will be required. Elements outside the upper trapezoidal part of the first m rows of H
need not be assigned.

[NP3390/19/pdf] E04NFF.3

E04NFF E04 – Minimizing or Maximizing a Function

If a non-default version of QPHESS is supplied, then in some cases it may be desirable to use a
one-dimensional array to transmit data to QPHESS. (This is illustrated in the example program
in Section 9 of the document for E04NGF.) H is then declared as a vector with dimension (LDH),
where LDH ≥N × (N+1)/2.

In other situations, it may be desirable to compute Hx or HTHx without accessing H – for example,
if H or HT H is sparse or has special structure. The parameters H and LDH may then refer to any
convenient array.

If the problem is of type FP or LP, H is not referenced.

9: LDH — INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which E04NFF
is called.

Constraints:

If the problem is of type QP1, QP2 (the default), QP3 or QP4, LDH ≥ N or at least the value
of the optional parameter Hessian Rows (default value = n; see Section 11.2).
If the problem is of type FP or LP, LDH ≥ 1.

10: QPHESS — SUBROUTINE, supplied by the NAG Fortran Library or the user. External Procedure

In general, the user need not provide a version of QPHESS, because a ‘default’ subroutine with name
E04NFU is included in the Library (NFUE04 in some implementations: see the Users’ Note for your
implementation for details). However, the algorithm of E04NFF requires only the product of H
or HT H and a vector x; and in some cases the user may obtain increased efficiency by providing a
version of QPHESS that avoids the need to define the elements of the matrices H or HTH explicitly.

QPHESS is not referenced if the problem is of type FP or LP, in which case QPHESS may be the
routine E04NFU (NFUE04 in some implementations).

Its specification is:

SUBROUTINE QPHESS(N, JTHCOL, H, LDH, X, HX)
INTEGER N, JTHCOL, LDH
real H(LDH,∗), X(N), HX(N)

1: N — INTEGER Input
On entry: this is the same parameter N as supplied to E04NFF (see above).

2: JTHCOL — INTEGER Input
On entry: JTHCOL specifies whether or not the vector x is a column of the identity matrix.
If JTHCOL = j > 0, then the vector x is the jth column of the identity matrix, and hence
Hx or HTHx is the jth column of H or HT H, respectively, which may in some cases require
very little computation and QPHESS may be coded to take advantage of this. However special
code is not necessary because x is always stored explicitly in the array X. If JTHCOL = 0, x
has no special form.

3: H(LDH,∗) — real array Input
On entry: this is the same parameter H as supplied to E04NFF (see above).

4: LDH — INTEGER Input
On entry: this is the same parameter LDH as supplied to E04NFF (see above).

5: X(N) — real array Input
On entry: the vector x.

6: HX(N) — real array Output
On exit: the product Hx if the problem is of type QP1 or QP2 (the default), or the product
HTHx if the problem is of type QP3 or QP4.

E04NFF.4 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

QPHESS must be declared as EXTERNAL in the (sub)program from which E04NFF is called.
Parameters denoted as Input must not be changed by this procedure.

11: ISTATE(N+NCLIN) — INTEGER array Input/Output

On entry: ISTATE need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), ISTATE specifies the desired status of
the constraints at the start of the feasibility phase. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, and the next mL elements refer to the general
linear constraints (if any). Possible values for ISTATE(j) are as follows:

ISTATE(j) Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value must

not be specified unless BL(j) = BU(j).

The values −2, −1 and 4 are also acceptable but will be reset to zero by the routine. If E04NFF has
been called previously with the same values of N and NCLIN, ISTATE already contains satisfactory
information. (See also the description of the optional parameter Warm Start in Section 11.2). The
routine also adjusts (if necessary) the values supplied in X to be consistent with ISTATE.

Constraint: −2 ≤ ISTATE(j) ≤ 4, for j = 1, 2, . . . ,N+NCLIN.

On exit: the status of the constraints in the working set at the point returned in X. The significance
of each possible value of ISTATE(j) is as follows:

ISTATE(j) Meaning
−2 The constraint violates its lower bound by more than the feasibility tolerance.
−1 The constraint violates its upper bound by more than the feasibility tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
working set.

1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of ISTATE

can occur only when BL(j) = BU(j).
4 This corresponds to optimality being declared with X(j) being temporarily fixed

at its current value. This value of ISTATE can occur only when IFAIL = 1 on
exit.

12: X(N) — real array Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which E04NFF terminated. If IFAIL = 0, 1 or 3, X contains an estimate of
the solution.

13: ITER — INTEGER Output

On exit: the total number of iterations performed.

14: OBJ — real Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, OBJ is set to zero.

15: AX(∗) — real array Output

Note: the dimension of the array AX must be at least max(1,NCLIN).

On exit: the final values of the linear constraints Ax.

If NCLIN = 0 then AX is not referenced.

[NP3390/19/pdf] E04NFF.5

E04NFF E04 – Minimizing or Maximizing a Function

16: CLAMDA(N+NCLIN) — real array Output

On exit: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the variables,
and the next mL elements contain the multipliers for the general linear constraints (if any). If
ISTATE(j) = 0 (i.e., constraint j is not in the working set), CLAMDA(j) is zero. If x is optimal,
CLAMDA(j) should be non-negative if ISTATE(j) = 1, non-positive if ISTATE(j) = 2 and zero if
ISTATE(j) = 4.

17: IWORK(LIWORK) — INTEGER array Workspace
18: LIWORK — INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which E04NFF
is called.

Constraint: LIWORK ≥ 2 × N + 3.

19: WORK(LWORK) — real array Workspace
20: LWORK — INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which E04NFF
is called.

Constraints:

For problems QP2 (the default) and QP4,
LWORK ≥ 2 × N2 + 8 × N + 5 × NCLIN if NCLIN > 0,
LWORK ≥ N2 + 8 × N if NCLIN = 0.

For problems QP1 and QP3,
LWORK ≥ 2 × N2 + 7 × N + 5 × NCLIN if NCLIN > 0,
LWORK ≥ N2 + 7 × N if NCLIN = 0.

If the problem is of type LP,
LWORK ≥ 8 × N + 1 if NCLIN = 0,
LWORK ≥ 2 × N2 + 8 × N + 5 × NCLIN if NCLIN ≥ N,
LWORK ≥ 2 × (NCLIN+1)2 + 8 × N + 5 × NCLIN otherwise.

If the problem is of type FP,
LWORK ≥ 7 × N + 1 if NCLIN = 0,
LWORK ≥ 2 × N2 + 7 × N + 5 × NCLIN if NCLIN ≥ N,
LWORK ≥ 2 × (NCLIN+1)2 + 7 × N + 5 × NCLIN otherwise.

The amounts of workspace provided and required are (by default) output on the current advisory
message unit (as defined by X04ABF). As an alternative to computing LIWORK and LWORK from
the formulas given above, the user may prefer to obtain appropriate values from the output of a
preliminary run with LIWORK and LWORK set to 1. (E04NFF will then terminate with IFAIL =
6.)

21: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL 	= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.

E04NFF returns with IFAIL = 0 if x is a strong local minimizer, i.e., the reduced gradient (Norm
Gz; see Section 8.2) is negligible, the Lagrange multipliers (Lagr Mult; see Section 8.2) are optimal
and HR (the reduced Hessian of f(x); see Section 10.2) is positive semi-definite.

E04NFF.6 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL = 1

The iterations were terminated at a dead-point. The necessary conditions for optimality are
satisfied but the sufficient conditions are not. (The reduced gradient is negligible, the Lagrange
multipliers are optimal, but HR is singular or there are some very small multipliers.) If ∇2f(x)
is not positive-definite, x is not necessarily a local solution of the problem and verification of
optimality requires further information. If ∇2f(x) is positive semi-definite or the problem is of
type LP, x gives the global minimum value of the objective function, but the final x is not unique.

IFAIL = 2

The solution appears to be unbounded, i.e., the objective function is not bounded below in the
feasible region. This value of IFAIL occurs if a step larger than Infinite Step Size (default value =
1020; see Section 11.2) would have to be taken in order to continue the algorithm, or the next step
would result in an element of x having magnitude larger than Infinite Bound Size (default value
= 1020; see Section 11.2).

IFAIL = 3

No feasible point was found, i.e., it was not possible to satisfy all the constraints to within the
feasibility tolerance. In this case, the constraint violations at the final x will reveal a value of the
tolerance for which a feasible point will exist – for example, when the feasibility tolerance for each
violated constraint exceeds its Slack (see Section 8.2) at the final point. The modified problem
(with an altered feasibility tolerance) may then be solved using a Warm Start (see Section 11.2).
The user should check that there are no constraint redundancies. If the data for the constraints
are accurate only to the absolute precision σ, the user should ensure that the value of the optional
parameter Feasibility Tolerance (default value =

√
ε, where ε is the machine precision; see

Section 11.2) is greater than σ. For example, if all elements of A are of order unity and are
accurate only to three decimal places, the optional parameter Feasibility Tolerance should be at
least 10−3.

IFAIL = 4

The limiting number of iterations was reached before normal termination occurred.

The values of the optional parameters Feasibility Phase Iteration Limit (default value =
max(50, 5(n + mL); see Section 11.2) and Optimality Phase Iteration Limit (default value =
max(50, 5(n + mL)); see Section 11.2) may be too small. If the method appears to be making
progress (e.g., the objective function is being satisfactorily reduced), either increase the iterations
limit and rerun E04NFF or, alternatively, rerun E04NFF using the Warm Start facility to specify
the initial working set.

IFAIL = 5

The reduced Hessian exceeds its assigned dimension. The algorithm needed to expand the reduced
Hessian when it was already at its maximum dimension, as specified by the optional parameter
Maximum Degrees of Freedom (default value = n; see Section 11.2).

The value of the parameter Maximum Degrees of Freedom is too small. Rerun E04NFF with a
larger value (possibly using the Warm Start facility to specify the initial working set).

IFAIL = 6

An input parameter is invalid.

IFAIL = 7

The designated problem type was not FP, LP, QP1, QP2, QP3 or QP4. Rerun E04NFF with the
optional parameter Problem Type (see Section 11.2) set to one of these values.

[NP3390/19/pdf] E04NFF.7

E04NFF E04 – Minimizing or Maximizing a Function

Overflow

If the printed output before the overflow error contains a warning about serious ill-conditioning
in the working set when adding the jth constraint, it may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter Feasibility Tolerance (default value =

√
ε,

where ε is the machine precision; see Section 11.2) and rerunning the program. If the message
recurs even after this change, the offending linearly dependent constraint (with index ‘j’) must be
removed from the problem.

7 Accuracy

The routine implements a numerically stable active set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

8 Further Comments

This section contains some comments on scaling and a description of the printed output.

8.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem
less sensitive to perturbations in the data, thus improving the condition of the problem. In the absence of
better information it is usually sensible to make the Euclidean lengths of each constraint of comparable
magnitude. See the Chapter Introduction and Gill et al. [7] for further information and advice.

8.2 Description of the Printed Output

This section describes the (default) intermediate printout and final printout produced by E04NFF. The
intermediate printout is a subset of the monitoring information produced by the routine at every iteration
(see Section 12). The level of printed output can be controlled by the user (see the description of the
optional parameter Print Level in Section 11.2). Note that the intermediate printout and final printout
are produced only if Print Level ≥ 10 (the default).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.
Step is the step taken along the computed search direction. If a constraint is added

during the current iteration, Step will be the step to the nearest constraint. When
the problem is of type LP, the step can be greater than one during the optimality
phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible, Objective
is the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point. During the optimality phase, the
value of the objective function will be non-increasing. During the feasibility phase,
the number of constraint infeasibilities will not increase until either a feasible point
is found, or the optimality of the multipliers implies that no feasible point exists.
Once optimal multipliers are obtained, the number of infeasibilities can increase,
but the sum of infeasibilities will either remain constant or be reduced until the
minimum sum of infeasibilities is found.

Norm Gz is ‖ZT
RgFR‖, the Euclidean norm of the reduced gradient with respect to ZR (see

Section 10.2 and Section 10.4). During the optimality phase, this norm will be
approximately zero after a unit step.

E04NFF.8 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j = 1, 2, . . . , n of the variable.
State gives the state of the variable (FR if neither bound is in the working set, EQ if a

fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by
more than the Feasibility Tolerance (default value =

√
ε, where ε is the machine

precision; see Section 11.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about
the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds,
but its Lagrange multiplier is essentially zero. This means that if the
variable were allowed to start moving away from its bound, there would be
no change to the objective function. The values of the other free variables
might change, giving a genuine alternative solution. However, if there are
any degenerate variables (labelled D), the actual change might prove to be
zero, since one of them could encounter a bound immediately. In either
case the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iterate.
Lower Bound is the lower bound specified for the variable. None indicates that BL(j) ≤ −bigbnd.
Upper Bound is the upper bound specified for the variable. None indicates that BU(j) ≥ bigbnd.
Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is

FR unless BL(j) ≤ −bigbnd and BU(j) ≥ bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL, and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BL(j) and BU(j). A blank entry indicates that the associated variable is not
bounded (i.e., BL(j) ≤ −bigbnd and BU(j) ≥ bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BL(j) and BU(j) are replaced by BL(n+j) and BU(n+j) respectively,
and with the following change in the heading:

L Con gives the name (L) and index j, for j = 1, 2, . . . ,mL of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

[NP3390/19/pdf] E04NFF.9

E04NFF E04 – Minimizing or Maximizing a Function

9 Example

To minimize the quadratic function f(x) = cTx+ 1
2x

THx, where

c = (−0.02, −0.2, −0.2, −0.2, −0.2, 0.04, 0.04)T

H =




2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 −2 −2
0 0 0 0 0 −2 −2




subject to the bounds
−0.01 ≤ x1 ≤ 0.01
−0.1 ≤ x2 ≤ 0.15
−0.01 ≤ x3 ≤ 0.03
−0.04 ≤ x4 ≤ 0.02
−0.1 ≤ x5 ≤ 0.05
−0.01 ≤ x6

−0.01 ≤ x7

and to the general constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 = −0.13
0.15x1 + 0.04x2 + 0.02x3 + 0.04x4 + 0.02x5 + 0.01x6 + 0.03x7 ≤ −0.0049
0.03x1 + 0.05x2 + 0.08x3 + 0.02x4 + 0.06x5 + 0.01x6 ≤ −0.0064
0.02x1 + 0.04x2 + 0.01x3 + 0.02x4 + 0.02x5 ≤ −0.0037
0.02x1 + 0.03x2 + 0.01x5 ≤ −0.0012

−0.0992 ≤ 0.70x1 + 0.75x2 + 0.80x3 + 0.75x4 + 0.80x5 + 0.97x6

−0.003 ≤ 0.02x1 + 0.06x2 + 0.08x3 + 0.12x4 + 0.02x5 + 0.01x6 + 0.97x7 ≤ 0.002

The initial point, which is infeasible, is

x0 = (−0.01,−0.03, 0.0,−0.01,−0.1, 0.02, 0.01)T.

The optimal solution (to five figures) is

x∗ = (−0.01,−0.069865, 0.018259,−0.24261,−0.62006, 0.013805, 0.0040665)T .

One bound constraint and four general constraints are active at the solution.

The document for E04NGF includes an example program to solve the same problem using some of the
optional parameters described in Section 11.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E04NFF Example Program Text
* Mark 18 Revised. NAG Copyright 1997.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NCMAX
PARAMETER (NMAX=10,NCMAX=10)
INTEGER LDA, LDH
PARAMETER (LDA=NCMAX,LDH=NMAX)
INTEGER LIWORK, LWORK
PARAMETER (LIWORK=1000,LWORK=10000)

E04NFF.10 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

* .. Local Scalars ..
real OBJ
INTEGER I, IFAIL, ITER, J, N, NCLIN

* .. Local Arrays ..
real A(LDA,NMAX), AX(NCMAX), BL(NMAX+NCMAX),

+ BU(NMAX+NCMAX), CLAMDA(NMAX+NCMAX), CVEC(NMAX),
+ H(LDH,NMAX), WORK(LWORK), X(NMAX)
INTEGER ISTATE(NMAX+NCMAX), IWORK(LIWORK)

* .. External Subroutines ..
EXTERNAL E04NFF, E04NFU

* .. Executable Statements ..
WRITE (NOUT,*) ’E04NFF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NCLIN
IF (N.LE.NMAX .AND. NCLIN.LE.NCMAX) THEN

*
* Read CVEC, A, BL, BU, X and H from data file
*

READ (NIN,*) (CVEC(I),I=1,N)
READ (NIN,*) ((A(I,J),J=1,N),I=1,NCLIN)
READ (NIN,*) (BL(I),I=1,N+NCLIN)
READ (NIN,*) (BU(I),I=1,N+NCLIN)
READ (NIN,*) (X(I),I=1,N)
READ (NIN,*) ((H(I,J),J=1,N),I=1,N)

*
* Solve the problem
*

IFAIL = -1
*

CALL E04NFF(N,NCLIN,A,LDA,BL,BU,CVEC,H,LDH,E04NFU,ISTATE,X,
+ ITER,OBJ,AX,CLAMDA,IWORK,LIWORK,WORK,LWORK,IFAIL)

*
END IF
STOP
END

9.2 Program Data

E04NFF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25 -9.92E-02 -3.0E-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0E+25 1.0E+25

-0.13 -4.9E-03 -6.4E-03 -3.7E-03 -1.2E-03 1.0E+25 2.0E-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X

[NP3390/19/pdf] E04NFF.11

E04NFF E04 – Minimizing or Maximizing a Function

2.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 2.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 2.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of matrix H

9.3 Program Results

E04NFF Example Program Results

*** E04NFF
*** Start of NAG Library implementation details ***

Implementation title: Generalised Base Version
Precision: FORTRAN double precision

Product Code: FLBAS19D
Mark: 19A

*** End of NAG Library implementation details ***

Parameters

Problem type........... QP2

Linear constraints..... 7 Feasibility tolerance.. 1.05E-08
Variables.............. 7 Optimality tolerance... 1.72E-13
Hessian rows........... 7 Rank tolerance......... 1.11E-14

Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16

Check frequency........ 50 Expand frequency....... 5
Minimum sum of infeas.. NO Crash tolerance........ 1.00E-02

Max degrees of freedom. 7 Print level............ 10
Feasibility phase itns. 70 Monitoring file........ -1
Optimality phase itns. 70

Workspace provided is IWORK(1000), WORK(10000).
To solve problem we need IWORK(17), WORK(189).

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0E+00 3 1.038000E-01 0.0E+00
1 4.1E-02 1 3.000000E-02 0.0E+00
2 4.2E-02 0 0.000000E+00 0.0E+00

Itn 2 -- Feasible point found.
2 0.0E+00 0 4.580000E-02 0.0E+00
3 1.3E-01 0 4.161596E-02 0.0E+00
4 1.0E+00 0 3.936227E-02 4.2E-17
5 4.1E-01 0 3.758935E-02 1.2E-02
6 1.0E+00 0 3.755377E-02 1.4E-17
7 1.0E+00 0 3.703165E-02 3.8E-17

E04NFF.12 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL -1.000000E-02 -1.000000E-02 1.000000E-02 0.4700 .
V 2 FR -6.986465E-02 -0.100000 0.150000 . 3.0135E-02
V 3 FR 1.825915E-02 -1.000000E-02 3.000000E-02 . 1.1741E-02
V 4 FR -2.426081E-02 -4.000000E-02 2.000000E-02 . 1.5739E-02
V 5 FR -6.200564E-02 -0.100000 5.000000E-02 . 3.7994E-02
V 6 FR 1.380544E-02 -1.000000E-02 None . 2.3805E-02
V 7 FR 4.066496E-03 -1.000000E-02 None . 1.4066E-02

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 EQ -0.130000 -0.130000 -0.130000 -1.908 -5.5511E-17
L 2 FR -5.879898E-03 None -4.900000E-03 . 9.7990E-04
L 3 UL -6.400000E-03 None -6.400000E-03 -0.3144 -8.6736E-19
L 4 FR -4.537323E-03 None -3.700000E-03 . 8.3732E-04
L 5 FR -2.915996E-03 None -1.200000E-03 . 1.7160E-03
L 6 LL -9.920000E-02 -9.920000E-02 None 1.955 2.7756E-17
L 7 LL -3.000000E-03 -3.000000E-03 2.000000E-03 1.972 -8.6736E-19

Exit E04NFF - Optimal QP solution.

Final QP objective value = 0.3703165E-01

Exit from QP problem after 7 iterations.

The remainder of this document is intended for more advanced users. Section 10 contains a detailed
description of the algorithm which may be needed in order to understand Section 11 and Section 12.
Section 11 describes the optional parameters which may be set by calls to E04MGF and/or E04MHF.
Section 12 describes the quantities which can be requested to monitor the course of the computation.

10 Algorithmic Details

This section contains a detailed description of the method used by E04NFF.

10.1 Overview

E04NFF is based on an inertia-controlling method that maintains a Cholesky factorization of the reduced
Hessian (see below). The method is based on that of Gill and Murray [2], and is described in detail by
Gill et al. [5]. Here we briefly summarize the main features of the method. Where possible, explicit
reference is made to the names of variables that are parameters of E04NFF or appear in the printed
output. E04NFF has two phases: finding an initial feasible point by minimizing the sum of infeasibilities
(the feasibility phase), and minimizing the quadratic objective function within the feasible region (the
optimality phase). The computations in both phases are performed by the same subroutines. The two-
phase nature of the algorithm is reflected by changing the function being minimized from the sum of
infeasibilities to the quadratic objective function. The feasibility phase does not perform the standard
simplex method (i.e., it does not necessarily find a vertex), except in the LP case when mL ≤ n. Once
any iterate is feasible, all subsequent iterates remain feasible.

E04NFF has been designed to be efficient when used to solve a sequence of related problems – for
example, within a sequential quadratic programming method for nonlinearly constrained optimization
(e.g., E04UCF). In particular, the user may specify an initial working set (the indices of the constraints
believed to be satisfied exactly at the solution); see the discussion of the optional parameter Warm Start
in Section 11.2.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate x̄ is

[NP3390/19/pdf] E04NFF.13

E04NFF E04 – Minimizing or Maximizing a Function

defined by
x̄ = x+ αp (1)

where the step length α is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter
Feasibility Tolerance; see Section 11.2). The working set is the current prediction of the constraints
that hold with equality at the solution of a linearly constrained QP problem. The search direction is
constructed so that the constraints in the working set remain unaltered for any value of the step length.
For a bound constraint in the working set, this property is achieved by setting the corresponding element
of the search direction to zero. Thus, the associated variable is fixed, and specification of the working
set induces a partition of x into fixed and free variables. During a given iteration, the fixed variables are
effectively removed from the problem; since the relevant elements of the search direction are zero, the
columns of A corresponding to fixed variables may be ignored.

Let mW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (mW and nFX are the quantities Lin and Bnd in the monitoring
file output from E04NFF; see Section 12). Similarly, let nFR (nFR = n− nFX) denote the number of free
variables. At every iteration, the variables are re-ordered so that the last nFX variables are fixed, with all
other relevant vectors and matrices ordered accordingly.

10.2 Definition of the Search Direction

Let AFR denote the mW by nFR sub-matrix of general constraints in the working set corresponding to
the free variables, and let pFR denote the search direction with respect to the free variables only. The
general constraints in the working set will be unaltered by any move along p if

AFRpFR = 0. (2)

In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR = (0 T), (3)

where T is a non-singularmW by mW upper triangular matrix (i.e., tij = 0 if i > j), and the non-singular
nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. [3]). If the columns
of QFR are partitioned so that

QFR = (Z Y),

where Y is nFR by mW, then the nZ (nZ = nFR −mW) columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 ≤ nR ≤ nZ , and let ZR denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring output from E04NFF.
In many cases, ZR will include all the columns of Z.) The direction pFR will satisfy (2) if

pFR = ZRpR, (4)

where pR is any nR-vector.

Let Q denote the n by n matrix

Q =
(
QFR

IFX

)
,

where IFX is the identity matrix of order nFX. Let HQ and gQ denote the n by n transformed Hessian
and transformed gradient

HQ = QTHQ and gQ = QT (c+Hx)

and let the matrix of first nR rows and columns of HQ be denoted by HR and the vector of the first
nR elements of gQ be denoted by gR. The quantities HR and gR are known as the reduced Hessian
and reduced gradient of f(x), respectively. Roughly speaking, gR and HR describe the first and second
derivatives of an unconstrained problem for the calculation of pR.

At each iteration, a triangular factorization of HR is available. If HR is positive-definite, HR = RTR,
where R is the upper triangular Cholesky factor of HR. If HR is not positive-definite, HR = RTDR,
where D = diag(1, 1, . . . , 1, µ), with µ ≤ 0.

E04NFF.14 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

The computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all zeros
except in the last (i.e., nRth) position. This allows the vector pR in (4) to be computed from a single
back-substitution

RpR = γeR (5)

where γ is a scalar that depends on whether or not the reduced Hessian is positive-definite at x. In the
positive-definite case, x+ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If HR is not positive-definite, pR satisfies the
conditions

pT
RHRpR < 0 and gT

RpR ≤ 0,

which allow the objective function to be reduced by any positive step of the form x+ αp.

10.3 The Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange multipliers λC and λB for the general
and bound constraints are defined from the equations

AT
FRλC = gFR and λB = gFX −AT

FXλC . (6)

Given a positive constant δ of the order of the machine precision, a Lagrange multiplier λj

corresponding to an inequality constraint in the working set is said to be optimal if λj ≤ δ when the
associated constraint is at its upper bound, or if λj ≥ −δ when the associated constraint is at its lower
bound. If a multiplier is non-optimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see Section 12)
from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, there
is no feasible point, and the user can force E04NFF to continue until the minimum value of the sum of
infeasibilities has been found; see the discussion of the optional parameter Minimum Sum of Infeasibilities
in Section 11.2. At such a point, the Lagrange multiplier λj corresponding to an inequality constraint in
the working set will be such that −(1+ δ) ≤ λj ≤ δ when the associated constraint is at its upper bound,
and −δ ≤ λj ≤ (1 + δ) when the associated constraint is at its lower bound. Lagrange multipliers for
equality constraints will satisfy |λj | ≤ 1 + δ.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the non-zero elements
of the search direction p are given by ZRpR (see (4) and (5)). The choice of step length is influenced
by the need to maintain feasibility with respect to the satisfied constraints. If HR is positive-definite
and x + p is feasible, α will be taken as unity. In this case, the reduced gradient at x̄ will be zero, and
Lagrange multipliers are computed. Otherwise, α is set to αM, the step to the ‘nearest’ constraint (with
index Jadd; see Section 12), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of AFR

changes. Explicit representations are recurred of the matrices T , QFR and R; and of vectors QT g, and
QT c. The triangular factor R associated with the reduced Hessian is only updated during the optimality
phase.

One of the most important features of E04NFF is its control of the conditioning of the working set,
whose nearness to linear dependence is estimated by the ratio of the largest to smallest diagonal elements
of the TQ factor T (the printed value Cond T; see Section 12). In constructing the initial working set,
constraints are excluded that would result in a large value of Cond T.

E04NFF includes a rigorous procedure that prevents the possibility of cycling at a point where the active
constraints are nearly linearly dependent (see Gill et al. [4]). The main feature of the anti-cycling
procedure is that the feasibility tolerance is increased slightly at the start of every iteration. This not
only allows a positive step to be taken at every iteration, but also provides, whenever possible, a choice
of constraints to be added to the working set. Let αM denote the maximum step at which x+ αMp does
not violate any constraint by more than its feasibility tolerance. All constraints at a distance α (α ≤ αM)

[NP3390/19/pdf] E04NFF.15

E04NFF E04 – Minimizing or Maximizing a Function

along p from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the working
set.

10.4 Choosing the Initial Working Set

At the start of the optimality phase, a positive-definite HR can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive-definite by definition,
corresponding to the case when AFR contains nFR constraints.) The idea is to include as many general
constraints as necessary to ensure that the reduced Hessian is positive-definite.

Let HZ denote the matrix of the first nZ rows and columns of the matrix HQ = QTHQ at the beginning
of the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix
R that is the factor of the largest positive-definite leading sub-matrix of HZ . The use of interchanges
during the factorization of HZ tends to maximize the dimension of R. (The condition of R may be
controlled using the optional parameter Rank Tolerance; see Section 11.2.) Let ZR denote the columns
of Z corresponding to R, and let Z be partitioned as Z = (ZR ZA). A working set for which ZR defines
the null space can be obtained by including the rows of ZT

A as ‘artificial constraints’. Minimization of the
objective function then proceeds within the subspace defined by ZR, as described in Section 10.2.

The artificially augmented working set is given by

ĀFR =
(
ZT

A

AFR

)
, (7)

so that pFR will satisfy AFRpFR = 0 and ZT
ApFR = 0. By definition of the TQ factorization, ĀFR

automatically satisfies the following:

ĀFRQFR =
(
ZT

A

AFR

)
QFR =

(
ZT

A

AFR

)
(ZR ZA Y) = (0 T̄),

where
T̄ =

(
I 0
0 T

)
,

and hence the TQ factorization of (7) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with ZA when ZT

RgFR = 0, since this simply
involves repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT

A is equal to
ZT

AgFR, and the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that
would be obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’ from
the working set, an A appears alongside the entry in the Jdel column of the monitoring file output (see
Section 12).

The number of columns in ZA and ZR, the Euclidean norm of ZT
RgFR, and the condition estimator of R

appear in the monitoring file output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 12).

Under some circumstances, a different type of artificial constraint isused when solving a linear program.
Although the algorithm of E04NFF does not usually perform simplex steps (in the traditional sense),
there is one exception: a linear program with fewer general constraints than variables (i.e., mL ≤ n). (Use
of the simplex method in this situation leads to savings in storage.) At the starting point, the ‘natural’
working set (the set of constraints exactly or nearly satisfied at the starting point) is augmented with a
suitable number of ‘temporary’ bounds, each of which has the effect of temporarily fixing a variable at
its current value. In subsequent iterations, a temporary bound is treated as a standard constraint until it
is deleted from the working set, in which case it is never added again. If a temporary bound is ‘deleted’
from the working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel column of the monitoring
file output (see Section 12).

E04NFF.16 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

11 Optional Parameters

Several optional parameters in E04NFF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of E04NFF these optional parameters have
associated default values that are appropriate for most problems. Therefore, the user need only specify
those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or both, of the routines E04NGF and E04NHF
prior to a call to E04NFF.

E04NGF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04NGF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04NGF
should be consulted for a full description of this method of supplying optional parameters.

E04NHF can be called to supply options directly, one call being necessary for each optional parameter.
For example,

CALL E04NHF (’Print Level = 5’)

E04NHF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04NFF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by the user.

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows all the valid keywords and their default values. The symbol ε
represents the machine precision (see X02AJF).

Optional Parameters Default Values

Check frequency 50
Cold/Warm start Cold Start
Crash tolerance 0.01
Defaults
Expand frequency 5
Feasibility phase iteration limit max(50, 5(n+mL))
Feasibility tolerance

√
ε

Hessian rows n
Infinite bound size 1020

Infinite step size max(bigbnd, 1020)
Iteration limit max(50, 5(n+mL))
List/Nolist List
Maximum degrees of freedom n
Minimum sum of infeasibilities No
Monitoring file −1
Optimality phase iteration limit max(50, 5(n+mL))

[NP3390/19/pdf] E04NFF.17

E04NFF E04 – Minimizing or Maximizing a Function

Optimality tolerance ε0.8

Print level 10
Problem type QP2
Rank tolerance 100ε

11.2 Description of the Optional Parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value, and the definition. The minimum abbreviation of
each keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be
omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r
denote INTEGER and real values required with certain options. The number ε is a generic notation for
machine precision (see X02AJF).

Check Frequency i Default = 50

Every ith iteration, a numerical test is made to see if the current solution x satisfies the constraints in
the working set. If the largest residual of the constraints in the working set is judged to be too large,
the current working set is refactorized and the variables are recomputed to satisfy the constraints more
accurately. If i ≤ 0, the default value is used.

Cold Start Default = Cold Start

Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, E04NFF chooses the initial
working set based on the values of the variables and constraints at the initial point. Broadly speaking,
the initial working set will include equality constraints and bounds or inequality constraints that violate
or ‘nearly’ satisfy their bounds (to within Crash Tolerance; see below).

With a Warm Start, the user must provide a valid definition of every element of the array ISTATE (see
Section 5 for the definition of this array). E04NFF will override the user’s specification of ISTATE if
necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any elements
of ISTATE which are set to −2, −1 or 4 will be reset to zero, as will any elements which are set to 3
when the corresponding elements of BL and BU are not equal. A warm start will be advantageous if a
good estimate of the initial working set is available – for example, when E04NFF is called repeatedly to
solve related problems.

Crash Tolerance r Default = 0.01

This value is used in conjunction with the optional parameterCold Start (the default value) when E04NFF
selects an initial working set. If 0 ≤ r ≤ 1, the initial working set will include (if possible) bounds or
general inequality constraints that lie within r of their bounds. In particular, a constraint of the form
aT

j x ≥ l will be included in the initial working set if |aT
j x− l| ≤ r(1 + |l|). If r < 0 or r > 1, the default

value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default = 5

This option is part of an anti-cycling procedure designed to guarantee progress even on highly degenerate
problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is δ. Over a period
of i iterations, the feasibility tolerance actually used by E04NFF (i.e., the working feasibility tolerance)
increases from 0.5δ to δ (in steps of 0.5δ/i).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First, all
variables whose upper or lower bounds are in the working set are moved exactly onto their bounds. A
count is kept of the number of non-trivial adjustments made. If the count is positive, iterative refinement
is used to give variables that satisfy the working set to (essentially) machine precision. Finally, the
working feasibility tolerance is reinitialized to 0.5δ.

E04NFF.18 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

If a problem requires more than i iterations, the resetting procedure is invoked and a new cycle of i
iterations is started with i incremented by 10. (The decision to resume the feasibility phase or optimality
phase is based on comparing any constraint infeasibilities with δ.)

The resetting procedure is also invoked when E04NFF reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any non-trivial adjustments
are made, iterations are continued.

If i ≤ 0, the default value is used. If i ≥ 9999999, no anti-cycling procedure is invoked.

Feasibility Phase Iteration Limit i1 Default = max(50, 5(n+mL))
Optimality Phase Iteration Limit i2 Default = max(50, 5(n+mL))

For problems of type FP, the scalar i1 specifies the maximum number of iterations allowed before
temination. Setting i1 = 0 and Print Level > 0 means that the workspace needed will be computed
and printed, but no iterations will be performed.

For problems of type LP, the maximum number of iterations allowed before temination is taken as
max(i1, i2). Setting i1 = 0, i2 = 0 and Print Level > 0 means that the workspace needed will be
computed and printed, but no iterations will be performed.

For problems of type QP, the scalars i1 and i2 specify the maximum number of iterations allowed in
the feasibility and optimality phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit.
Setting i1 = 0 and Print Level > 0 means that the workspace needed will be computed and printed, but
no iterations will be performed.

If i1 < 0 or i2 < 0, the default value is used.

Feasibility Tolerance r Default =
√
ε

If r ≥ ε, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point. For
example, if the variables and the coefficients in the general constraints are of order unity, and the latter
are correct to about 6 decimal digits, it would be appropriate to specify r as 10−6. If 0 ≤ r < ε, the
default value is used.

E04NFF attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the optional parameter Minimum Sum of Infeasibilities (see
below) can be used to find the minimum value of the sum. Let Sinf be the corresponding sum of
infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor of 10 or 100. Otherwise,
some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.

Hessian Rows i Default = n

Note that this option does not apply to problems of type FP or LP.

This specifies m, the number of rows of the Hessian matrix H . The default value of m is n, the number
of variables of the problem.

If the problem is of type QP, m will usually be n, the number of variables. However, a value of m less
than n is appropriate for QP3 or QP4 if H is an upper trapezoidal matrix with m rows. Similarly, m
may be used to define the dimension of a leading block of non-zeros in the Hessian matrices of QP1 or
QP2, in which case the last n −m rows and columns of H are assumed to be zero. In the QP case, m
should not be greater than n; if it is, the last m− n rows of H are ignored.

If i < 0 or i > n, the default value is used.

Infinite Bound Size r Default = 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound
less than or equal to −bigbnd will be regarded as minus infinity). If r ≤ 0, the default value is used.

Infinite Step Size r Default = max(bigbnd, 1020)

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an unbounded
solution. (Note that an unbounded solution can occur only when the Hessian is not positive-definite.) If

[NP3390/19/pdf] E04NFF.19

E04NFF E04 – Minimizing or Maximizing a Function

the change in x during an iteration would exceed the value of r, the objective function is considered to
be unbounded below in the feasible region. If r ≤ 0, the default value is used.

Iteration Limit i Default = max(50, 5(n+mL))
Iters

Itns

See Feasibility Phase Iteration Limit above.

List Default = List

Nolist

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

Maximum Degrees of Freedom i Default = n

Note that this option does not apply to problems of type FP or LP.

This places a limit on the storage allocated for the triangular factor R of the reduced HessianHR. Ideally,
i should be set slightly larger than the value of nR expected at the solution. It need not be larger than
mN +1, where mN is the number of variables that appear nonlinearly in the quadratic objective function.
For many problems it can be much smaller than mN .

For quadratic problems, a minimizer may lie on any number of constraints, so that nR may vary between
1 and n. The default value of i is therefore the number of variables n. If Hessian Rows m is specified,
the default value of i is the same number, m.

Minimum Sum of Infeasibilities No Default = No
Minimum Sum of Infeasibilities Yes

If no feasible point exists for the constraints, this option is used to control whether or not E04NFF
will calculate a point that minimizes the constraint violations. If Minimum Sum of Infeasibilities = No,
E04NFF will terminate as soon as it is evident that no feasible point exists for the constraints. The final
point will generally not be the point at which the sum of infeasibilities is minimized. If Minimum Sum
of Infeasibilities = Yes, E04NFF will continue until the sum of infeasibilities is minimized.

Monitoring File i Default = −1

If i ≥ 0 and Print Level ≥ 5 (see below), monitoring information produced by E04NFF at every iteration
is sent to a file with logical unit number i. If i < 0 and/or Print Level < 5, no monitoring information is
produced.

Optimality Phase Iteration Limit i Default = max(50, 5(n+mL))

See Feasibility Phase Iteration Limit above.

Optimality Tolerance r Default = ε0.8

If r ≥ ε, r defines the tolerance used to determine if the bounds and general constraints have the right
‘sign’ for the solution to be judged to be optimal.

If 0 ≤ r < ε, the default value is used.

Print Level i Default = 10

The value of i controls the amount of printout produced by E04NFF, as indicated below. A detailed
description of the printed output is given in Section 8.2 (summary output at each iteration and the final
solution) and Section 12 (monitoring information at each iteration). If i < 0, the default value is used.

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output
0 No output.
1 The final solution only.
5 One line of summary output (< 80 characters; see Section 8.2) for each iteration (no printout

of the final solution).
≥ 10 The final solution and one line of summary output for each iteration.

E04NFF.20 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NFF

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see above):

i Output
< 5 No output.
≥ 5 One long line of output (> 80 characters; see Section 12) for each iteration (no printout of the

final solution).
≥ 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values Ax and the

constraint status.
≥ 30 At each iteration, the diagonal elements of the upper triangular matrix T associated with the

TQ factorization (3) (see Section 10.2) of the working set, and the diagonal elements of the
upper triangular matrix R.

If Print Level ≥ 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output is suppressed.

Problem Type a Default = QP2

This option specifies the type of objective function to be minimized during the optimality phase. The
following are the five optional keywords and the dimensions of the arrays that must be specified in order
to define the objective function:

LP H not referenced, CVEC(N) required;
QP1 H(LDH,*) symmetric, CVEC not referenced;
QP2 H(LDH,*) symmetric, CVEC(N) required;
QP3 H(LDH,*) upper trapezoidal, CVEC not referenced;
QP4 H(LDH,*) upper trapezoidal, CVEC(N) required.

For problems of type FP, the objective function is omitted and neither H nor CVEC are referenced.

The following keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a Option
Quadratic QP2
Linear LP
Feasible FP

In addition, the keyword QP is equivalent to the default option QP2.

If H = 0, i.e., the objective function is purely linear, the efficiency of E04NFF may be increased by
specifying a as LP.

Rank Tolerance r Default = 100ε

Note that this option does not apply to problems of type FP or LP.

This parameter enables the user to control the condition number of the triangular factor R (see Section
10). If ρi denotes the function ρi = max{|R11|, |R22|, . . . , |Rii|}, the dimension of R is defined to be
smallest index i such that |Ri+1,i+1| ≤

√
r|ρi+1|. If r ≤ 0, the default value is used.

Warm Start

See Cold Start above.

12 Description of Monitoring Information

This section describes the long line of output (> 80 characters) which forms part of the monitoring
information produced by E04NFF. (See also the description of the optional parameters Monitoring File
and Print Level in Section 11.2). The level of printed output can be controlled by the user.

To aid interpretation of the printed results, the following convention is used for numbering the constraints:
indices 1 through n refer to the bounds on the variables, and indices n+ 1 through n+mL refer to the
general constraints. When the status of a constraint changes, the index of the constraint is printed, along
with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint).

[NP3390/19/pdf] E04NFF.21

E04NFF E04 – Minimizing or Maximizing a Function

When Print Level ≥ 5 and Monitoring File ≥ 0, the following line of output is produced at every iteration
on the unit number specified by Monitoring File. In all cases, the values of the quantities printed are
those in effect on completion of the given iteration.

Itn is the iteration count.
Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no

constraint was deleted.
Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint

was added.
Step is the step taken along the computed search direction. If a constraint is added

during the current iteration (i.e., Jadd is positive), Step will be the step to the
nearest constraint. When the problem is of type LP, the step can be greater than
one during the optimality phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible, Objective
is the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point. During the optimality phase, the
value of the objective function will be non-increasing. During the feasibility phase,
the number of constraint infeasibilities will not increase until either a feasible point
is found, or the optimality of the multipliers implies that no feasible point exists.
Once optimal multipliers are obtained, the number of infeasibilities can increase,
but the sum of infeasibilities will either remain constant or be reduced until the
minimum sum of infeasibilities is found.

Bnd is the number of simple bound constraints in the current working set.
Lin is the number of general linear constraints in the current working set.
Art is the number of artificial constraints in the working set, i.e., the number of columns

of ZA (see Section 10.4).
Zr is the number of columns of ZR (see Section 10.2). Zr is the dimension of the

subspace in which the objective function is currently being minimized. The value
of Zr is the number of variables minus the number of constraints in the working
set; i.e., Zr = n− (Bnd+ Lin+ Art). The value of nZ , the number of columns of
Z (see Section 10.2) can be calculated as nZ = n − (Bnd + Lin). A zero value of
nZ implies that x lies at a vertex of the feasible region.

Norm Gz is ‖ZT
RgFR‖, the Euclidean norm of the reduced gradient with respect to ZR.

During the optimality phase, this norm will be approximately zero after a unit
step.

NOpt is the number of non-optimal Lagrange multipliers at the current point. NOpt is
not printed if the current x is infeasible or no multipliers have been calculated. At
a minimizer, NOpt will be zero.

Min Lm is the value of the Lagrange multiplier associated with the deleted constraint. If
Min Lm is negative, a lower bound constraint has been deleted, if Min Lm is positive,
an upper bound constraint has been deleted. If no multipliers are calculated during
a given iteration, Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.
Cond Rz is a lower bound on the condition number of the triangular factor R (the Cholesky

factor of the current reduced Hessian; see Section 10.2). If the problem is specified
to be of type LP, Cond Rz is not printed.

Rzz is the last diagonal element µ of the matrix D associated with the RTDR
factorization of the reduced Hessian HR (see Section 10.2). Rzz is only printed
if HR is not positive-definite (in which case µ 	= 1). If the printed value of Rzz
is small in absolute value, then HR is approximately singular. A negative value
of Rzz implies that the objective function has negative curvature on the current
working set.

E04NFF.22 (last) [NP3390/19/pdf]

